Innovative Methodology High-Resolution Multitransistor Array Recording of Electrical Field Potentials in Cultured Brain Slices
نویسندگان
چکیده
Hutzler, M., A. Lambacher, B. Eversmann, M. Jenkner, R. Thewes, and P. Fromherz. High-resolution multitransistor array recording of electrical field potentials in cultured brain slices. J Neurophysiol 96: 1638–1645, 2006. First published May 10, 2006; doi:10.1152/jn.00347.2006. We report on the recording of electrical activity in cultured hippocampal slices by a multitransistor array (MTA) with 16,384 elements. Time-resolved imaging is achieved with a resolution of 7.8 m on an area of 1 mm at 2 kHz. A read-out of fewer elements allows an enhanced time resolution. Individual transistor signals are caused by local evoked field potentials. They agree with micropipette measurements in amplitude and shape. The spatial continuity of the records provides time-resolved images of evoked field potentials and allows the detection of functional correlations over large distances. As examples, fast propagating waves of presynaptic action potentials are recorded as well as patterns of excitatory postsynaptic potentials across and along cornu ammonis.
منابع مشابه
High-resolution multitransistor array recording of electrical field potentials in cultured brain slices.
We report on the recording of electrical activity in cultured hippocampal slices by a multitransistor array (MTA) with 16,384 elements. Time-resolved imaging is achieved with a resolution of 7.8 microm on an area of 1 mm2 at 2 kHz. A read-out of fewer elements allows an enhanced time resolution. Individual transistor signals are caused by local evoked field potentials. They agree with micropipe...
متن کاملA novel organotypic long-term culture of the rat hippocampus on substrate-integrated multielectrode arrays.
Spatiotemporally coordinated activity of neural networks is crucial for brain functioning. To understand the basis of physiological information processing and pathological states, simultaneous multisite long-term recording is a prerequisite. In a multidisciplinary approach we developed a novel system of organotypically cultured rat hippocampal slices on a planar 60-microelectrode array (MEA). T...
متن کاملInnovative Methodology Single-trial imaging of spikes and synaptic potentials in single neurons in brain slices with genetically encoded hybrid voltage sensor
Ghitani N, Bayguinov PO, Ma Y, Jackson MB. Single-trial imaging of spikes and synaptic potentials in single neurons in brain slices with genetically encoded hybrid voltage sensor. J Neurophysiol 113: 1249 –1259, 2015. First published November 19, 2014; doi:10.1152/jn.00691.2014.—Genetically encoded voltage sensors expand the optogenetics toolkit into the important realm of electrical recording,...
متن کاملMulti-electrode arrays technology for the non-invasive recording of neural signals: a review article
The recording of electrophysiological activities of brain neurons in the last half-century has been considered as one of the effective tools for the development of neuroscience. One of the techniques for recording the activity of nerve cells is the multi-electrode arrays (MEAs). Microelectrode arrays (MEAs) are usually employed to record electrical signals from electrogenic cells like neurons o...
متن کاملLarge-scale, high-resolution electrophysiological imaging of field potentials in brain slices with microelectronic multielectrode arrays
Multielectrode arrays (MEAs) are extensively used for electrophysiological studies on brain slices, but the spatial resolution and field of recording of conventional arrays are limited by the low number of electrodes available. Here, we present a large-scale array recording simultaneously from 4096 electrodes used to study propagating spontaneous and evoked network activity in acute murine cort...
متن کامل